flandre/us.ipynb

214 lines
838 KiB
Plaintext
Raw Normal View History

2025-04-13 16:47:14 +08:00
{
"cells": [
{
"metadata": {
"ExecuteTime": {
2025-04-16 17:53:18 +08:00
"end_time": "2025-04-15T16:57:56.708615Z",
"start_time": "2025-04-15T16:57:56.374273Z"
2025-04-13 16:47:14 +08:00
}
},
"cell_type": "code",
"source": [
"import numpy as np\n",
"\n",
"from flandre.beamformer.dist import direct_dist\n",
"from flandre.beamformer.das import gen_pwi\n",
"from flandre.utils.Config import DeviceConfig, ImagingConfig\n",
"from flandre.utils.RfMat import RfMat\n",
"from flandre.utils.RfMeta import RfFrameMeta, RfSequenceMeta\n",
"from flandre.utils.ScanData import ScanData\n",
"from pathlib import Path\n",
"import scipy\n",
"import cv2\n",
"import cupy as cp\n",
"import cupyx.scipy.fft\n",
"from matplotlib import pyplot as plt"
],
"id": "5518f8a97320440e",
2025-04-16 17:53:18 +08:00
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/lambda/source/scarlet/flandre/.venv/lib/python3.12/site-packages/cupyx/jit/_interface.py:173: FutureWarning: cupyx.jit.rawkernel is experimental. The interface can change in the future.\n",
" cupy._util.experimental('cupyx.jit.rawkernel')\n"
]
}
],
"execution_count": 2
2025-04-13 16:47:14 +08:00
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-13T05:31:08.792101Z",
"start_time": "2025-04-13T05:31:08.334419Z"
}
},
"cell_type": "code",
"source": [
"\n",
"dc = DeviceConfig(v2=1540, rows=1490)\n",
"pwi, _ = gen_pwi(direct_dist(dc, p=cp), dc)\n",
"\n",
"input_path = Path('/run/media/lambda/b86dccdc-f134-464b-a310-6575ee9ae85c/uf/cap-30/328_parallel.bin')\n",
"input_sd = ScanData.from_file(input_path, (256, 1502), p=cp)\n",
"plt.figure(figsize=(40, 20))\n",
"dctm = cupyx.scipy.fft.dctn(input_sd.m)\n",
"dctm = cupyx.scipy.fft.dctn(input_sd.m)\n",
"\n",
"# dctm[mask[:,:,3]!=0] = 0\n",
"dctm[:30, :800] = 0\n",
"m2 = cupyx.scipy.fft.idctn(dctm)\n",
"input_sd.m = m2\n",
"\n",
"input_sd = input_sd.dct(80, 1500)\n",
"# pass.hib().abs().filter_min(300)\n",
"plt.imshow(input_sd.m.get()[:, 600:], cmap='grey')\n",
"plt.imshow(pwi(input_sd.m).get(), cmap='grey')"
],
"id": "734b0e53cbb44961",
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7d27773fb2f0>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"<Figure size 4000x2000 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAR+CAYAAABECYBFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/UmPpsmSngdbZMxTRs41nKoz9SHVIAGJAim2uNFC4EL/gDsJ2lMbrsSFBGglLbmQAP0ALSToDwgQuJQEEWhIgKbTp5tnqjHnjHmO+BaN6i/89rtes9friczTHde1KnvjcXNzczNz8yfirVy4vr6+DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDvEvQ9tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPuGL1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCdgy9UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnYMvVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJ2DL1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCdgy9UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnYMvVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJ2DL1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCdgy9UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnYMvVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJ3jg32h4r/5b/6b+OlPfxpra2vxJ3/yJ/Gv/tW/+lCmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAHWPh+vr6+n1P+j/8D/9D/If/4X8Y/+1/+9/Gn/zJn8S/+Bf/Iv7H//F/jD/7sz+LZ8+epeOvrq7i66+/ju3t7VhYWHgPFgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwB8619fXsb+/H59++mncuzf736D4IF+o+JM/+ZP4d/6dfyf+6//6v46Iv/yCxOeffx7/yX/yn8R/+p/+p+n4L7/8Mj7//PPbNhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4a8sUXX8Rnn30285ml92TLX3F2dhZ/+qd/Gv/8n//zv/rs3r178Y//8T+O/+1/+9/smNPT0zg9Pf0r+bvvgPxn/9l/FmtraxERcXR01I07Pj5u5O+e/Y6VlZXU3qurq0be2tpq5Hfv3nVj9F/N0Hn39/e7Mffv32/km+uNiLi4uOjG7O7uNvL29nYjLy4udmPUltXV1Zk63dxqq35r5/DwsNOxsbHRyOoDXa+z7cGDB+k8ul/qg7Ozs27M+vr6TB0utp48edLIb968aWT1s5tXv8v06NGjRn779m03Zmdnp5HVj0tLeUpr3C8vL3fPfPvtt4388OHDRv7973/fjfnZz37WyOoT/ddnXrx40enY3Nxs5JOTk0ZWv0b43MjQPdYY0Nrh5tZcefz4cSPv7e11OtT3z58/b+SPP/64G6O5oXvsckf96J5RNN/UBy5ONL80hnWPXXzqHmuMu/xTP6qtrvbpZ+fn542sPovo91Dz/uXLl90YPSN0fWq7+06j+lqfcfGpenVetSuij2GdV2tuRO+TLC8i+vqhOau13NmqMaw5q/vpxmgMaMw7WzRm9fyL6GNUewDV6eJT41796M4Q9VNWPyPyXHF9ka7H5WSGzqN+dTGt69P9Ojg46MZobb+8vJxphxuj63U+0ZzUMS6vs5pasVVzp5IHqldj+NWrV90YPc+011CdEX29UB+42qD9o54h2td+8803nQ7NDfXBj370o26M+lFrufvX7zQes3kjep/87ne/a2Ttmyo1Kas3EXmcZN+2d/M4tP6rXtd7aFxonOt6XO3T3MnqS0Qfs2qby1n9TOu0873eC3UvNKYdWpNUh8u/rJa7Xjn7Vx6dT9Q2jVlnW9anu/5S5850uJjWz1Sns1XHqKzrj8j96OZR1I86T6W2q45Knrv8Uip6sjHqI+fH7AxUHS4mNO4rftR6ofOO3DNdTGSxVMnrrNeoxJrrLZRsnkptUFyeV86Mip6b6B47W3V9Wbx+32c3ydZfmdc9U9nj7P1XpUdVvVktdHqy3thRGZPVIF2/W192HlTIfBSR77GLkxFbMr2Vuq1jsjhyejXfKmdxJR6zfKrk6MhdTT9TO1x/qevTc9XNo+e1njNu/Tqm8n4o6w01pp2tuuaKrVmdrtTLim26PpUrtUHH6LzOVt3zbF5HpafJ4s+9G1e9+r4k6+PdPDqm8rsNtcPFRNYHuXzLzp1KDcpq30jfW2Gk1lfO0UqPndmSrXmq/w/fyN1zXh1OT2XMvPNOtZ+VHlvJeppK75utZ6SOVRgZU7FFyXrhiPnXXNExQiUfR2J65D6nTNE/K5VzdYTbuIeM7Hkl/6aoUe9rnpH+uTLvFHfryh1+pH7MWy8dt3Xmv4953lds/SHzPnqrio4KI3V6ijOlQnYXm+LdT0XvyHlQeaekVOIms+W2eo0K2Twj72CmOA8c76v2jfhkXkbuPyMxXdE7wm3E51R58L7unvNSOWdva56Red9XT3MbfKh+5UPFFszPyclJ/Ff/1X9V+puN9/6FilevXsXl5WV89NFHzecfffRR/PKXv7Rj/sv/8r+M/+K/+C+6z9fW1v7qJbJrUPSzKb5QoX+U5P5gMftChXsBrc9UXrDr3Poy3L2Azr5Q4X6Rrb8oy/6Ayv2iV8e4P2jIxqg88gtl1/iq3sofOGR+zHwU0RfVkT/qVz+OfKHC5UG2Hjcm84muz/3yRnWoj27rCxXZvO6Z7MselS8JqR/d+pTsF5ROT+XlT5YHbs81v3SPVWfll2KZHc6W7A803WcqO99nf8RfiWFlii9UuDGZXmdX9mUPXW9Ef35leeGe0ZxVufLLYX3G7bmOqXyhQm3RvXC2ZX+QrzorX3bU2HMNdnZGOrJfzFe+UKFnYuWSq/Nkv6iPyNdX+cMDfcbVoPf1hYqspla+UJH1Y26M6s3OaveMzut8n52jrjZob6Q1JztTIvI/XnN1TNejPqjkW+WPDbPeqZLD2R/2OFvn7dsdlTzP9FZqQ/bLbmfrFF+oGPnFYNZbRfSxVOk1FL5QwRcqKn/YOsUXKqZ6Jhvzh/KFCudHvlDR86G+UFF5mZzdg3V9fKGCL1Q4HXyhYpovVFTetd61L1RUYu02vlBR+bIAX6i4e1+oyPZr5AsVI3/syxcq+EJFBF+o4AsVfKHCwRcq+EIFX6jo4QsVNfhCxe3AFyp6+EIFX6jgCxXz66zAFyp6+ELF7c0zMi9fqPjh8zr+UHwEf0llP977FypG+Of//J/HP/tn/+yv5L29vfj8889jYWHhrxbp/m/wf/RHf9TI+n9Ld3+wrp9lf/Tu/q/m+genlf9TuM6ret3/zV//1Qd9Se2aPP0jq8r/uTH7RZm++Hb/V1tds+pwftT16B5XfuGjsvOJ/hJB53G/ZFDb1G/Z/8k4overzut+Ya6/BFMdzo/6h7mq19mmsaV63be19P9grf9CReX/nq7/AkCliH355ZeNrP8sj/tlsO5f5Zco2R/DVl7kaDyqT9TvEd5PN6n8kVzlF1pZDFe+bKX/qorO6/6wVZ/R2HL/V/Psj1Td/mldUtsr/wJH5eVI9sdMuufu/w6v82Rf7HC2Vv4QJvujD7cWta3yf6bM1jPygrPyxbDsi1MutrJz1OWBfpbpqJzNqtONyf7oz9X27Jfs7rzL/oDbjVGyS0SlNmR/ZBwx9sd52csfd4ZoXa580U3ru+oY+cPdysu67IttlR5He9TKC7BK/VcfaD3Mvgzi9H711VczdUTk/zqIqw3qp+xfI4ro/aa+z77UFtHXhuyPhyLy/zuuy0fNJ43Hyh+9j/xrWNkX7Cp/AF25h2g8Vr5Mpnoq+5X9YdbIH3pWviyt81T+KGlkTNYnVNaXfUkvYv4/znY1qfJFFGXkF4UjL8CyOK/861Ga55U/HMzO4sof21fIvoRQ+UPdkV8YZHWssr7sD+0clRwdWU/2JZORPyKo5IGup2LryB/jZffvyi9Lsz2ufHGq8ofklS8zZmOUqf4Qbd4vUFT+qDj
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 7
},
{
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2025-04-13T06:12:42.465079Z",
"start_time": "2025-04-13T06:12:42.168296Z"
}
},
"source": [
"input_path = Path('/run/media/lambda/b86dccdc-f134-464b-a310-6575ee9ae85c/uf/cap-30/328_parallel.bin')\n",
"input_bytes = input_path.read_bytes()\n",
"mat = np.frombuffer(input_bytes, dtype=np.int16).copy()\n",
"mat = mat.reshape((256, 1502))\n",
"mat = cp.asarray(mat)\n",
"\n",
"dc = DeviceConfig(v2=1540, rows=1490)\n",
"pwi, _ = gen_pwi(direct_dist(dc, p=cp), dc)\n",
"\n",
"rfmat = RfMat(mat, RfFrameMeta(), RfSequenceMeta(shape=(256, 1502)))\n",
"rfmat = rfmat.dct(80, 1500)\n",
"rfmat = rfmat.call(pwi)\n",
"rfmat = rfmat.call(cp.asarray, order='C')\n",
"rfmat = rfmat.argrelextrema()\n",
"rfmat = rfmat.conv_guass(b=18 * 0.01)\n",
"rfmat = rfmat.cpu()\n",
"\n",
"plt.figure(figsize=(40, 20))\n",
"plt.imshow(rfmat.m, cmap='grey')\n",
"\n"
],
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7d276b189a00>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"<Figure size 4000x2000 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAR+CAYAAABECYBFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvTuvZUlynh3nfq3q6utcODPkiARtAboQ8vUf5EmQTzm0REeALLk0JEB/4YP+gBzaAgTIkCGAgkQC1HCG3dPddTv3+2cManDWu6J2vDsq9zlFnudxunPtlZmRkRGRkbnWqrN2d3d3FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+I9ccWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4KHhgwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhy8EEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8OfigAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnhx8UAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8OPqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAnBx9UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAk4MPKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4MnBBxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDk4IMKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4cjzaBxX/6T/9p/i93/u92N3djT/6oz+K//7f//tjiQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+Mtbu7u7uH7vT/+//+v/iX//Jfxn/+z/85/uiP/ij+7M/+LP7Lf/kv8b//9/+Or776qqx/e3sbv/rVr+LZs2extrb2ABIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDHzt3dXRwdHcWPf/zjWF9f/DcoHuWDij/6oz+Kf/JP/kn8x//4HyPiNx9I/PSnP41/82/+Tfzbf/tvy/p/8zd/Ez/96U9XLSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwd5Be/+EX85Cc/WXjP5gPJ8lsuLy/jf/yP/xF/+qd/+ttr6+vr8c//+T+P//bf/lta5+LiIi4uLn5bfvcNyJdffvnbL0a2t7dn9ba2thbKkn1Lol+gaLs7OzsL24yIuLq6mpSvr6/LOtqvynZzczOrc3t7u7CN7GsaraPtZrJqOxsbGwt/z/Sq17TO7u7urI7qWvvNZL28vJyUdS4yPWq71fgiaj3qX07Z3Jy7mtqW9pvJenp6Oimfn59PyjreiLnutZ/MTyq7z8ajelJZVFbHL1R21Xt2TXWv442Yjzm7R6nmVNt07Kayo4ieHrVdlTX7yz6Vn2d2ktnBfdQftZyhtld9FZiRydWJJ/fXneyeTI+VTpw512tOHNN7nHWo8p1sXd3b25uUVa+ZTtSPVRaVI5O1WqsynVTrjvMXrrQN5xvUqh9njVT7zOZCdV/ZeMRcT2rj2RpS2f2IvxSW+Xmlt2w9GDFfI8jssbJ7J4dTneg9WZzW/ErLWT8qayfX0HadPOjZs2eT8g9+8INJ+Yc//OGsjRcvXizsN5sLXYt0vCcnJ7M6r169mpTfvn07u0fZ39+flFX32m/Wpvb78uXLSfn4+HhWp8qvMp+t/DrzpWo9y3zUkaWi8vPMpqvcPouXeq0Tg5zfq/XN0aPi5BqVrI6dOL934rLixMeKKn5m9ziyV7m9M94RflDJkdVx9kydfb/aW9Vvdq1jaxWdfjM7qezP2a8686V05ryi4+eOTY/w8048ceyok19Wul3VX811xlPZY8f/qjaya07s66w71T0j5rwTp501pJNLrWINGTW+EWuxksnWma+OPSq63nXOChw6cauKj1mdKhcckbeP2kd3/LrCie2K2kC2f632B86zm1XEdgdnvio76cSTTPcd++voZNm8oWPTnT2hk3N3zhGdNb9iRD7prHdVGxH1PqQTp0fsmVa1PjhtdOLlsvlXFvuq50qZHqtze2d8I/YHI9bqUXOhdGKfo/sRue6InNvJHTvPUEacRVZtdmJDxogctXNu4+ixWvOVzvxldNaDzv5gFfboUMnmPAuu5iKiHs+q9quVzTr9dujkRc7vnVyqo8cKZ/46+5vq+Zyzj6zW80yOx1oj9dlo9qy0mq/suac+Sxyx7jj7kBGxvXMWMuIduRFnMKP2FIrjS04crvquzhceS69OP5097qqo9ipZXlQ9v3LGN2Lv6fxe5QlOjK18+H3XPhRnD6jlx7KjDk5c7vh1Z139+0Smo2r9zs4oPvTs+O7uLl69ejV7LynjwT+o+O677+Lm5mb2ktQPfvCD+Iu/+Iu0zn/4D/8h/v2///ez6+vr679Veudhd+a0VdBxAk5nY+y8nKB0NoVVQuLocRUfVGR6dRZFpRN0Osnisi95jBpfJZuz0eq8ROY8WNJ2VffVg6eMzsLaOWTqfFAxYtF07LPSY2dj2fHzTgLW0bPjf8u2EdHztyrRcx74KCMeaDkfA46IDR07GfEyZUfWzrrzMX9Q4czFiHzF+ZCv8wLHsnTylYyP5YMKx0er3zsfVIyyk+oDH+fl7M4aUn2omH3UXH0gkslarefZwalzILtsHZUja7OT91U+OeqhyogXDVbxEuqqHuyOyFudg+ARMXYVbTjtPOZLxSPa+Jh0/RBydHQywq9H9LMqmx5hJ6P6qXgsP18VH4uf/12Lfcv2vao5f6g2VuGzDg8VLz/mNWQVe0BHlodq46HG1+l3hN2PWIdWpaNVrJFVHx05nHYeKtfo8Fgx6aHyyw6PFYMfKsY+5niWvedjzp8fa33IeCydrGId6sjymLpXVrGurqofhxF5w99lO3modeljXldXEafddpbtx+Gh7PFD5er2+1j+1rn/sXKaETxWzvaYa8hjrQdVG849Tj/Ve0wjxjPiQ0b3nqqOw2PFy4daQzptVnP6WL7jsCof/Vg+qOiMb9nf3X5WwUPl3CPoyPYxf1DxWPudj9n/RrAqvX7oh9Dv1n+n3oN/UNHhT//0T+NP/uRPflt++/Zt/PSnP42rq6vfKsv5F2idl2eqv0ChSu18KZz9K+3VF67Oxx/6Ilb2L1pXL31nL8pXTtr5F9eVTCf6r+52PqiovoSLmL84p+PNdKL/SruWnX9lX/tx/kXa6mXDjOqvBGS6136qf+E6k6Wy4WwuOi/Ddj7c6PzriNUL+Y6fO39pQKm+TnX+BbTqX0KPqP+yQkb1r5brHGd9HB4eTsr6JWAWk6uPSLLYp9e0Df3rLxHzf71f7cL5F+s6f1nB6UfpfDE/4kXr7MXjSrbqw7fOh3CZTatsOp+Zj3b+NR6dH7U152OeKjnMdKLyVy+0Z+1oG6qjiPovMDkfMKlOqhfLI+o1I5O1+ssDWT8qm65vWQxS+R2/qOJl51+60vl05k91ksXLyh6d2KA6yvKG58+fT8r6Fyh++tOfTso//vGPZ23oGqI6Ub1H1GtVJmvnRfmDg4OF7Tr+V/1LO5l9Vh+VdP5FJif2qZ04f/Gm81fGRhzKqN3rXxOJmM+Xjtf5V4CqdSi7pnYx4l+uz+JJZRedfwXIoXMA3ckTKlty/gU7B8dmHwJn/io7GfUhrfrKiH/t0fkHAUb8y8WKYxOdf9nK8dGqnxEfkToflTo+W3383fkgbcTHf84Hrs753ioeOjgxtvMPJ6ziX3gb9a/JdljWR501pfNhvvMXFat+HuqvPjj/GEN1T+df2e+MrxODOrHcyYWrc8VRsipOHtHxt2XjVsdnnX8pr9N3x7Y6MWjEx+FODjBivzPiL6h0/oEYZ10akdN0/uXNEf/gxoh/gMN53jPCpjMq++vESyfWOeOp+h31olnVj9L5h2g6/6KpE5M6OlE6LwN1+unEyypudf6ywkO9SOLE3M65VCdeVjh7M+eZUeXXnfE581X9QztOXlS9HBux/F/RHLHOZu04/yBfZ/3u/Cv01XMX512FEf9AzIh/nHTUP7b6EP8isBMvO3nfQ73o2YnLnfFV/Tj/KvaIv+o64py0846Ls+50zrk769CIf0ByREzN5k+
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 19
2025-04-16 17:53:18 +08:00
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-15T16:58:11.825438Z",
"start_time": "2025-04-15T16:58:00.002256Z"
}
},
"cell_type": "code",
"source": [
"from flandre.utils.RfFile import RfSequence\n",
"\n",
"rff = RfSequence.from_zip(Path('/mnt/16T/private_dataset/us/R1,U=90,M=PWI,S=(256 4502).zip'))"
],
"id": "4acfc7303fa58cf",
"outputs": [],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-15T16:59:00.287886Z",
"start_time": "2025-04-15T16:59:00.285593Z"
}
},
"cell_type": "code",
"source": "rff.frames[0].data",
"id": "75e9c5f82736241",
"outputs": [
{
"data": {
"text/plain": [
"PosixPath('/mnt/16T/private_dataset/us/R1,U=90,M=PWI,S=(256 4502).zip/0.zst')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 10
2025-04-13 16:47:14 +08:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}