412 lines
11 KiB
Python
412 lines
11 KiB
Python
import inspect
|
|
|
|
import cupyx
|
|
import cv2
|
|
import matplotlib
|
|
import numpy as np
|
|
import cupy as cp
|
|
|
|
import cupyx
|
|
import cupyx.scipy.fft
|
|
import cupyx.scipy.ndimage
|
|
import cupyx.scipy.signal
|
|
import cv2
|
|
import scipy
|
|
import scipy.signal
|
|
from cupyx.scipy.fft import dctn, idctn
|
|
from scipy.stats import norm as norms
|
|
|
|
from flandre.utils.RfFrame import RfFrame, RfFrameFile, RfFrameMemory
|
|
from flandre.utils.RfMeta import RfFrameMeta, RfSequenceMeta
|
|
|
|
|
|
def hsv_to_rgb(hsv):
|
|
"""
|
|
Convert HSV values to RGB.
|
|
|
|
Parameters
|
|
----------
|
|
hsv : (..., 3) array-like
|
|
All values assumed to be in range [0, 1]
|
|
|
|
Returns
|
|
-------
|
|
(..., 3) `~numpy.ndarray`
|
|
Colors converted to RGB values in range [0, 1]
|
|
"""
|
|
hsv = np.asarray(hsv)
|
|
|
|
# check length of the last dimension, should be _some_ sort of rgb
|
|
if hsv.shape[-1] != 3:
|
|
raise ValueError("Last dimension of input array must be 3; "
|
|
f"shape {hsv.shape} was found.")
|
|
|
|
in_shape = hsv.shape
|
|
hsv = np.array(
|
|
hsv, copy=False,
|
|
dtype=np.promote_types(hsv.dtype, np.float32), # Don't work on ints.
|
|
ndmin=2, # In case input was 1D.
|
|
)
|
|
|
|
h = hsv[..., 0]
|
|
s = hsv[..., 1]
|
|
v = hsv[..., 2]
|
|
|
|
r = np.empty_like(h)
|
|
g = np.empty_like(h)
|
|
b = np.empty_like(h)
|
|
|
|
i = (h * 6.0).astype(int)
|
|
f = (h * 6.0) - i
|
|
p = v * (1.0 - s)
|
|
q = v * (1.0 - s * f)
|
|
t = v * (1.0 - s * (1.0 - f))
|
|
|
|
idx = i % 6 == 0
|
|
r[idx] = v[idx]
|
|
g[idx] = t[idx]
|
|
b[idx] = p[idx]
|
|
# #
|
|
idx = i == 1
|
|
r[idx] = q[idx]
|
|
g[idx] = v[idx]
|
|
b[idx] = p[idx]
|
|
#
|
|
idx = i == 2
|
|
r[idx] = p[idx]
|
|
g[idx] = v[idx]
|
|
b[idx] = t[idx]
|
|
|
|
idx = i == 3
|
|
r[idx] = p[idx]
|
|
g[idx] = q[idx]
|
|
b[idx] = v[idx]
|
|
|
|
idx = i == 4
|
|
r[idx] = t[idx]
|
|
g[idx] = p[idx]
|
|
b[idx] = v[idx]
|
|
|
|
idx = i == 5
|
|
r[idx] = v[idx]
|
|
g[idx] = p[idx]
|
|
b[idx] = q[idx]
|
|
|
|
idx = s == 0
|
|
r[idx] = v[idx]
|
|
g[idx] = v[idx]
|
|
b[idx] = v[idx]
|
|
|
|
rgb = np.stack([r, g, b], axis=-1)
|
|
|
|
return rgb.reshape(in_shape)
|
|
|
|
|
|
def bypass(f):
|
|
def wrapper(self, *args, **kwargs):
|
|
if 'cond' not in kwargs:
|
|
return f(self, *args, **kwargs)
|
|
if kwargs['cond']:
|
|
del kwargs['cond']
|
|
return f(self, *args, **kwargs)
|
|
else:
|
|
return self
|
|
|
|
return wrapper
|
|
|
|
|
|
def bypassClass(original_class):
|
|
for name, f in inspect.getmembers(original_class, inspect.isfunction):
|
|
setattr(original_class, name, bypass(f))
|
|
return original_class
|
|
|
|
|
|
@bypassClass
|
|
class RfMat:
|
|
@staticmethod
|
|
def from_rf_frame(frame: RfFrame, device='cpu'):
|
|
if isinstance(frame, RfFrameFile):
|
|
seq_meta = frame.seq.meta
|
|
elif isinstance(frame, RfFrameMemory):
|
|
seq_meta = frame.seq_meta
|
|
else:
|
|
raise NotImplementedError()
|
|
m = np.frombuffer(frame.__bytes__(), dtype=np.int16).reshape(seq_meta.shape).copy()
|
|
if device == 'gpu':
|
|
m = cp.asarray(m)
|
|
return RfMat(m, frame.meta, seq_meta)
|
|
|
|
def __init__(self,
|
|
data: cp.ndarray,
|
|
frame_meta: RfFrameMeta = None,
|
|
seq_meta: RfSequenceMeta = None,
|
|
):
|
|
self.m = data
|
|
self.cv = False
|
|
self.frame_meta = frame_meta
|
|
self.seq_meta = seq_meta
|
|
if isinstance(data, np.ndarray):
|
|
self.device = 'cpu'
|
|
elif isinstance(data, cp.ndarray):
|
|
self.device = 'gpu'
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def call(self, f, *args, **kwargs):
|
|
return self.copy(f(self.m, *args, **kwargs))
|
|
|
|
def apply(self, f, *args, **kwargs):
|
|
f(self.m, *args, **kwargs)
|
|
return self
|
|
|
|
def copy(self, data=None):
|
|
if data is None:
|
|
return RfMat(self.m.copy(), self.frame_meta, self.seq_meta)
|
|
return RfMat(data, self.frame_meta, self.seq_meta)
|
|
|
|
@property
|
|
def duration(self):
|
|
return self.m.shape[1]
|
|
|
|
@property
|
|
def w(self):
|
|
return self.m.shape[1]
|
|
|
|
@property
|
|
def h(self):
|
|
return self.m.shape[0]
|
|
|
|
@property
|
|
def p(self):
|
|
if self.device == 'cpu':
|
|
return np
|
|
return cp
|
|
|
|
def __bytes__(self):
|
|
return self.m.tobytes()
|
|
|
|
def init_cv(self):
|
|
cv2.namedWindow('image')
|
|
self.cv = True
|
|
|
|
def norm(self):
|
|
m = self.m.astype(self.p.float32)
|
|
m -= m.min()
|
|
mmax = m.max()
|
|
if mmax == 0:
|
|
return self.copy(self.p.zeros_like(m))
|
|
m /= mmax
|
|
return self.copy(m)
|
|
|
|
def grey(self):
|
|
m = self.norm().m
|
|
return self.copy((m * 255).astype(self.p.uint8))
|
|
|
|
def pseudo_color(self):
|
|
m = self.norm().m * 0.7
|
|
p = self.p
|
|
h = m
|
|
s = p.zeros_like(h) + 1
|
|
v = p.zeros_like(h) + 1
|
|
hsv = p.stack((h, s, v), axis=2)
|
|
if p == cp:
|
|
rgb = hsv_to_rgb(hsv.get())
|
|
else:
|
|
rgb = hsv_to_rgb(hsv)
|
|
return self.copy((rgb * 255).astype(np.uint8))
|
|
|
|
def cpu(self):
|
|
if self.device == 'cpu':
|
|
return self
|
|
return self.copy(self.m.get())
|
|
|
|
def crop(self, t_start: int, t_end: int):
|
|
return self.copy(self.m[:, t_start:t_end])
|
|
|
|
def crop_center(self, center: float, width: float):
|
|
mmin = max(0, int(center - width / 2))
|
|
mmax = min(self.duration, int(center + width / 2))
|
|
|
|
mmin = min(mmin, self.duration - width)
|
|
mmax = max(mmax, width)
|
|
|
|
return self.crop(mmin, mmax)
|
|
|
|
def watermark(self, watermark=None):
|
|
assert self.m.dtype == np.uint8
|
|
canvas = np.zeros(self.m.shape, dtype=np.uint8)
|
|
ccp = self.copy()
|
|
|
|
line1 = ''
|
|
line2 = ''
|
|
if watermark is not None:
|
|
line1 = watermark
|
|
else:
|
|
if self.frame_meta is not None:
|
|
line1 = self.frame_meta.name
|
|
if self.seq_meta is not None:
|
|
line2 = self.seq_meta.name
|
|
if canvas.shape.__len__() == 2:
|
|
color1 = (255,)
|
|
color2 = (128,)
|
|
elif canvas.shape[2] == 3:
|
|
color1 = (255, 255, 255)
|
|
color2 = (128, 128, 128)
|
|
else:
|
|
raise NotImplementedError()
|
|
fontsize = 2
|
|
cv2.putText(canvas, line1, (0, 60), cv2.FONT_HERSHEY_PLAIN, fontsize, color1, 8)
|
|
cv2.putText(canvas, line1, (0, 60), cv2.FONT_HERSHEY_PLAIN, fontsize, color2, 4)
|
|
|
|
cv2.putText(canvas, line2, (0, 120), cv2.FONT_HERSHEY_PLAIN, fontsize, color1, 8)
|
|
cv2.putText(canvas, line2, (0, 120), cv2.FONT_HERSHEY_PLAIN, fontsize, color2, 4)
|
|
|
|
if canvas.shape.__len__() == 2:
|
|
ccp.m[canvas == 255] = 255
|
|
ccp.m[canvas == 128] = 0
|
|
elif canvas.shape[2] == 3:
|
|
ccp.m[canvas[:, :] == 255] = 255
|
|
ccp.m[canvas[:, :] == 128] = 0
|
|
else:
|
|
raise NotImplementedError()
|
|
return ccp
|
|
|
|
def show(self, shape=None, watermark=None):
|
|
if not self.cv:
|
|
self.init_cv()
|
|
cv2.imshow('image', self
|
|
.grey()
|
|
.cpu()
|
|
.resize(shape, bypass=shape is None)
|
|
.watermark(watermark).m
|
|
)
|
|
return cv2.waitKey(0)
|
|
|
|
def info(self):
|
|
print(f'shape: {self.m.shape},device: {self.device}')
|
|
print(self.frame_meta)
|
|
print(self.seq_meta)
|
|
return self
|
|
|
|
def resize(self, shape):
|
|
if self.device == 'cpu':
|
|
return self.copy(cv2.resize(self.m, shape))
|
|
raise NotImplementedError()
|
|
|
|
def rotate90(self):
|
|
return self.copy(self.p.rot90(self.m, k=3))
|
|
|
|
def dct(self, mmin, mmax):
|
|
dct_ = scipy.fft.dct
|
|
idct = scipy.fft.idct
|
|
if self.p == cp:
|
|
dct_ = cupyx.scipy.fft.dct
|
|
idct = cupyx.scipy.fft.idct
|
|
m_dct = dct_(self.m)
|
|
if self.seq_meta.d() == 2:
|
|
m_dct[:, mmax:] = 0
|
|
m_dct[:, :mmin] = 0
|
|
elif self.seq_meta.d() == 3:
|
|
m_dct[:, :, mmax:] = 0
|
|
m_dct[:, :, :mmin] = 0
|
|
else:
|
|
raise NotImplementedError()
|
|
return self.copy(idct(m_dct))
|
|
|
|
def dct_center(self, center, bandwidth):
|
|
mmin = max(0, int(center - bandwidth / 2))
|
|
mmax = min(self.duration, int(center + bandwidth / 2))
|
|
return self.dct(mmin, mmax)
|
|
|
|
def argrelextrema(self, axis=1):
|
|
arg = scipy.signal.argrelextrema
|
|
m = self.m
|
|
p = self.p
|
|
if p == cp:
|
|
arg = cupyx.scipy.signal.argrelextrema
|
|
rm = p.zeros_like(m)
|
|
indies1 = arg(m, p.greater, axis=axis)
|
|
bl = p.zeros_like(m, dtype=p.bool_)
|
|
indies2 = arg(m, p.less, axis=axis)
|
|
bl2 = p.zeros_like(m, dtype=p.bool_)
|
|
bl[indies1] = True
|
|
bl2[indies2] = True
|
|
i1 = bl & (m > 0)
|
|
i2 = bl2 & (m < 0)
|
|
idx = i1 | i2
|
|
rm[idx] = m[idx].__abs__()
|
|
return self.copy(rm)
|
|
|
|
def conv_guass(self, b=0.01, axis=1):
|
|
cv = scipy.ndimage.convolve1d
|
|
m = self.m
|
|
p = self.p
|
|
if p == cp:
|
|
cv = cupyx.scipy.ndimage.convolve1d
|
|
rv = norms(loc=0, scale=b)
|
|
x2 = np.arange(-1, 1.1, 0.1)
|
|
w = rv.pdf(x2)
|
|
if p == cp:
|
|
w = cp.asarray(w)
|
|
rm = cv(m, w, axis=axis)
|
|
return self.copy(rm)
|
|
|
|
def time_gain_compensation_linear_float(self, scale: float, start: int = 0):
|
|
h = self.m.shape[-1]
|
|
addend = self.p.zeros((1, h), dtype=self.p.float32)
|
|
addend[:, start:] = (self.p.arange(h - start) * scale) + 1
|
|
return self.copy(self.m * addend)
|
|
|
|
def time_gain_compensation_linear(self, scale: float, start: int = 0):
|
|
self.m = self.m.astype(np.float32)
|
|
h = self.m.shape[-1]
|
|
addend = self.p.zeros((1, h), dtype=np.int64)
|
|
addend[:, start:] = self.p.arange(h - start) * scale
|
|
self.m[:, start:] *= addend
|
|
s2 = self.m[:, h - 500:]
|
|
m1 = self.m[:, h - 500:].max()
|
|
m2 = m1 * scale
|
|
s2[s2 > m2] = m2
|
|
self.m[:, h - 500:] = s2 * (1 / scale)
|
|
return self
|
|
|
|
def time_gain_compensation(self, scales: list[float]):
|
|
self.m = self.m.astype(np.float32)
|
|
h = self.m.shape[-1]
|
|
block = h // scales.__len__()
|
|
ssss = 0
|
|
mmax = self.m.max()
|
|
for scale in scales:
|
|
s2 = self.m[:, ssss:ssss + block]
|
|
new_max = mmax * scale
|
|
s2[s2 > new_max] = new_max
|
|
self.m[:, ssss:ssss + block] = s2 * (mmax / new_max)
|
|
ssss += block
|
|
return self
|
|
|
|
def time_gain_compensation_linear_max(self, scale: float, mmax: int | None = None, start: int = 0):
|
|
if scale == 0:
|
|
return self
|
|
if mmax is None:
|
|
mmax = self.m.max()
|
|
h = self.m.shape[-1]
|
|
self.m = self.m.astype(np.float64)
|
|
mmax_arr = self.p.zeros(h) + mmax
|
|
mmax_arr[start:] -= self.p.arange(h - start) * scale
|
|
for i in range(h):
|
|
# a[1, a[1, :] > 99] = 99
|
|
self.m[self.m[:, i] > mmax_arr[i], i] = mmax_arr[i]
|
|
self.m[:, i] *= (mmax / mmax_arr[i])
|
|
self.m[self.m > mmax] = mmax
|
|
self.m = self.m.astype(np.int64)
|
|
return self
|
|
|
|
def jupyter(self):
|
|
from matplotlib import pyplot as plt
|
|
plt.figure(figsize=(40, 20))
|
|
plt.imshow(self.m, cmap='grey')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
cp.zeros((1, 2, 3)) + 1
|